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Abstract-The example of the finite-difference method application for the heat transport calculations in the 
nuclear reactor channel is considered in this work. The system differential equations solution is presented in 
the comfortable way for the described case. These equations are sewn together by the boundary conditions on 
the surfaces between the system components separately considered. The particular simplification is obtained 
by the elimination of the coolant temperature in the fmite-difference equations system. The coolant 
temperature is connected with the fuel and cladding temperature by the one-dimensional energy equation. In 
this way the calculations time economy is obtained. The presented method may be generalized for more 
complicated systems. Moreover this method assures the stability of the finite-difference equations system. 

NOMENCLATURE 

heat capacity ; 
heat flux ; 
heat source per unit volume; 

radial coordinate in a cylindrical system ; 
inner radius of the fuel pin ; 
outer radius of the fuel pin, inner radius of the 

gas gap ; 
outer radius of the gas gap, inner radius of the 

cladding; 

outer radius of the cladding, inner radius of the 

reactor channel ; 
outer radius of the reactor channel; 

time ; 
temperature; 
coolant velocity ; 
axial coordinate in a cylindrical system. 

symbols 

convective heat transfer coefficient ; 
heat conductivity ; 
density. 

Subscripts 

c, coolant ; 
Cl, cladding ; 
f, fuel pin ; 

g, gas gap ; 
% saturation ; 
a, critical. 

The gas gap conductivity is averaged as follows : 

X&T,) = 2,{i[T&,r,,t) + Tgkr3,t)l). 

1. INTRODUCTION 

THE DISTRIBUTION of fuel temperature and also of other 

thermodynamic and hydraulic quantities in the re- 

actor fuel element which are under consideration here 

are of great importance for the safety aspects ofnuclear 

reactors. In particular, the former allows the critical 

heat flux to be predicted in the case of an accident of 

the main circulating pumps. 

These reasons caused nuclear specialists to focus 

their attention on the above problem. We are citing 

some works in which the problem was tackled by 

means of the finite-difference method. 

In [6] different heat exchanger systems are con- 

sidered which are reduced to the hyperbolical partial 

differential sets of equations which are later solved by 

means of the finite-difference method. 

The works of [7] and [8] contain the difference 

methods with the application to the thermal con- 

ductivity equation solution. 

The work [9] describes a programme system for the 

phenomenon analysis in the fuel element during 

LOCA. 

In the proposed paper the quasi-linear equation 

system describing the phenomenon has been changed 

into the quasi-linear differential equation system. 

Intentionally, has been indicated that the quasi-linear 

boundary condition of the third kind enables the 

elimination of the average coolant temperature from 

the obtained system of difference equations. It is of 

great practical importance due to complicated 

thermophysical relations in the reactor channel and 

allows the calculation time to be diminished. 

2. DESCRIPTION OF THE PHYSICAL PROBLEM 

An analysis of the problem of convective heat 

transfer to the cooling fluid is presented in this paper. 

The following assumptions have been introduced : 
-there is axial symmetry ofeither the physical body 

or the physical properties’ field in the fuel element 

and in the whole reactor channel as well ; 
-fuel element heat is conducted according to the 

Fourier equation ; 
-inside surface of the fuel is assumed to be an 

adiabatic wall and the heat is transferred from the 
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off-centre fuel surface through the gas gap toward 
the cladding; 

--small heat capacity of the gas existing inside the 
gap allows treatment of the unsteady heat con- 
duction within the gap as the steady state con- 
duction phenomenon ; 

-heat conduction in the cladding is described by 
the Fourier equation ; 

-axial heat conduction in the channel is negligible ; 
-inlet coolant velocity is a time-dependent function 

and is given as a boundary condition; 
-coolant temperature is assumed to be the mean 

value of the actual coolant temperature in radial 
direction ; 

-heat generation in the fuel element is a time- and 
axial-dependent function ; 

-steady state temperature distribution is assumed 
at the initial moment ; 

-coolant pressure is assumed to be constant at the 
whole length of the channel. 

If we bore in mind the above assumptions then the 
unsteady state temperature distributions appearing in 
the particular areas of the considered system would be 
governed by energy conservation equations written for 
cylindrical coordinates as the following formulas : 

in the fuel region 

in the gas gap region 

1 
;.$ r.&(r,).~ 

[ 1 =o; (2) 
in the cladding region 

1 a 
; g 

[ 
r .i.,,(TJ.z 

I 

= M-J . P,U,,) .% ; (3) 

in the cooling fluid region 

dT,_C - x + w(z, t) .% 
dt 

2 . r4 . dz, t) 

= (r: - 6) . P,(T,) . c,~(T,) ’ 
(4) 

The boundary conditions are: 

- E,,(T,) . 2 =o; 
+ I=,, 

Tf(z, r = rZ, t) = T&z, r = t-z, t); 

(5) 

(6) 

-&(T,) .z _ = - $(T& .s ; (7) 
r--T* + ,=1> 

T&G r = r3, t) = Tc,(z, r = r3, t); (8) 

-lg(Tg) 35 
ar- ,_ = -i.,,(T,,) . > (9) 

+ I=,)’ 

-MT,,) $$ _ = q(z, r) 
r--r4 

= 01 . [TJz, r = r,,t) - T,(z,t)]. (10) 

Equations (1) and (3) are solved using the backward 
finite-difference method. The temperature distribution 
in the fuel region rl < r < rz is determined by the 
following formula : 

T,(z, r, t) = A 1 T&z, r - Ar, t) + A 2 T,(z, r + Ar, t) 

+ A, T,(z,r, t - At) + A,. (11) 

If rl = 0 then 

T&z, 0, t) = A: T,(z, Ar, t) 

+ A; . T,(z,O,t - At) + A;; (12) 

and if rr > 0 then 

Tr(z, rl, t) = (A, t A,). T,(z, ri + Ar, t) 

+ A, T,(z, rlr t - At) + A,. (13) 

On the other hand for the fuel-gas gap boundary r = 
r2 and we have 

TAz, r2, t) = T.&z, r2. f) = 
A, + A, 

1 +y,.A, 
T,(z, r2 - Ar, t) 

+ 
Yl 'A2 

1 +“i’, ‘A, 
T&r,, t) + 

A3 

1 fY1 'A2 

x T,(z,r,, t - At) + 
4 

1 fy, .A,’ 
(14) 

For the steady state, t = 0, the fuel temperature 
distribution can be presented as 

Tf(z, r, 0) = B, T,(z, r - Au, 0) 

+ B, . T,(z,r + Ar,O) + B,. (15) 

For the determination of the temperature distribution 
in the cladding region r3 < r < r4 equation (3) may be 
written in the following form: 

T,,(z,r, t) = C’, T,,(z, r - Ar, t) 

+ C, . T,,(z, r + Ar, t) 

+ C, T,,(z,r, t - At). (16) 

If r = r3 then 

T,dz, r3, r) = T&z, r3, r) = 
c, +c2 

1 fY,'C, 

x T,,(z, r3 + Ar, t) + 
Y2'Cl 

1 + Yz ‘Cl 

x T,,kr2, r) + 
c3 

1 fY2.C, 

X TJz, r3, f - At). (17) 
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The steady state temperature distribution in the 
cladding region is determined by the formula 

T&, r, 0) = D, T,,(z, r - Ar, 0) 

+ D, . T,,(z,r + Ar,O). (18) 

Expressions (14) and (17) are based on the solution of 
equation (2) and on the boundary conditions (6) and 
(9). The formulas defining the coefficients : Ai, A!, Ci, Di 
and yi have been presented in the Appendix. 

The representation of the conservation energy 
equation (4) solution for cooling medium consists of 
the characteristics, i.e. of the curves that fulfil the 
ordinary differential equations system, 

dz 
- = w(z, t, 7-J; 
dt 

dT 
2 = B. [T,,( > z r4, t) - T,(z, t)], (20) 

where 

B= 
2 . r4 . a[ T&, t)] 

P,[T,(z, t)l . cpc [T,(z, t)l . (r: - r:) ’ 
(21) 

Both equation (19) as the movement equation and 
equation (20) as the temperature one are referred to the 
coolant particles. The function T,(z, t) is known either 
for r = 0, as T,(z, Otthe steady state distribution, or 
for z = 0, as the time-dependent function of the 
channel inlet temperature, T,(O, t). The characteristic 
equations are difficult to solve in the general case. The 
particular analysis for the cladding-coolant heat 
transfer is required to be made. Such analysis appoints 

an essentiality of this paper. 

3. APPROXIMATION OF THE CHARACTERISTIC 
EQUATIONS SYSTEM SOLUTION 

Several approximating assumptions have to be 
considered for the simplifying of the numerical 
calculations of the above-mentioned characteristic 
equations system. These assumptions run as follow. 
The variability range oft that we consider is chopped 
into equal-length parts At. The range of z is treated in 
the same way for obtaining AZ parts. As a result we can 
get the rectangular mesh in the (z, t) plane, as it is 
shown in Fig. 1. The characteristic equations (19) and 
(20) are considered then in the little rectangular 
computational area l-2-3-4 situated within the mesh. 
This area is shown in Fig. 2. 

3.1. The fluid velocity determination within the 
computational rectangular area 

The first simplifying assumption we have made is 
that there is a constant fluid velocity inside the 
computational rectangle l-2-3-4. This assumption is 
justified by the fact, that the area l-2-3-4 may be 
chosen arbitrarily small depending upon the chopping 
performed. It can therefore be assumed with negligible 
error that the fluid particle is at constant velocity in the 
considered area. From this assumption it follows that 

the particle trajectory imitated on the (z, t) plane 
becomes the segment 5-4 of the straight line. This line 

runs from the point 4 toward either side l-2 or side 
l-3 of the considered rectangle as it has shown in Figs. 
3 and 4. All particle velocities at the rectangle corners 
are known except the velocity at point number 4. This 
one will be determined later using the continuity 
equation and eventually the other relations. The 
typical case is that the velocities at the points I,2 and 3 
do not differ too much from each other in view of the 
small size of the rectangle and the velocity continuity. 
In further considerations we shall admit little 
differences between the fluid velocity at these points. 

If it is assumed that 

w >> 0 (22) 

then the particle trajectory must intersect either 

segment l-2 or segment 1-3, as shown in Figs. 3 and 4. 
These velocities may be interpolated linearly in the 
segments l-2 and 1-3. Subsequently we can create a 

new point (number 5) on one of these segments such 
that the particle trajectory imitated on the (z, t) 
coordinates includes points 5 and 4. The segment 
obtained is so inclined as a result of the linear velocity 
interpolation. This straight line is accepted as an 
approximation of the characteristic projection within 
the rectangle l-2-3-4. All of the computations are 
necessary to determine the point 5. 

Point 5 can be determined from the condition 

w,.,~.At=q’Ai (23) 

where p and q are the point 5 coordinates. 
If we used the linear interpolation for the segment 

l-3Lin this case p = l-then we should obtain 

w 
q= A: 

(24) 

w3 + t - WI 

FIG. 1. The rectangular mesh in the (2,~) plane and the 
characteristics projected on this plane. 
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where 

Z I 
characteristic 

;: 
;? 

I 
N ,_ 

0 
t-At 

FIG. 2. The little calculation rectangle. 

If q < 1 then these coordinates determine the point 5 
position within the segment l-3. This is shown in 
Fig. 4. 

On the other hand if q > 1 then the interpolation 
equation has to be set for the segment l-2. In this case 
q = 1 and therefore we obtain 

p = 2(wzW: w,) 
.(l - %/Cl - 5)) 

‘(z-l rZ,t-At ) Pk-bz, 

(25) 

4(w, - 
AZ 

5= 

%) ‘& 

U’Z 
(26) 

2 

For I<( < 1 we can apply formula [1] 

1-J(l-i’,+ 
[ 

1 (2.i- l)!! 
l+ c i=l 2i.i! ‘5i 1 

(27) 

and we will obtain the sought formula for p 

AZ 

p=g 1+ i  V.i--l)!! .5’ 
(28) 

w 2 [ i=l 
2i.i! 1 

In this way we have appointed the position of point 5 
so that this point is situated within the segment 1-2. 
Subsequently, based on the linear interpolation, we 
calculate the cooling fluid temperature T, at point 5 
and determine the values of pC, cP, and a according to 
this temperature. These coefficients appear in formula 
(21), which defines the coefficient b. Furthermore we 
assume these parameters to be constant within the 

segment 5-4 just as we have done for velocity w. In 
consequence this leads to the following assumption 

B = B[T,(% 4Jl. (29) 

The characteristic equations are subsequently 
integrated in the next subsection. 

3.2. The integration of the characteristic equations in the 
computational rectangle 

3.2.1. The transformation of the coordinates system. 
The point (z, t), arbitrarily fixed, is the computational 
rectangle corner, which we denote as point 4 (Figs. 2 

and 4). We denote the current coordinates as (6 T). The 
new coordinates p* and q*+onveniently computable 

in the considered rectangle-are defined by formulas 

[=z-y*.Az, T=t-p*.At. (30) 

The functions appearing in the continuation of this 
work have been denoted according to the relationship 

T(r) = T**[ic&), 71 

= T***(p*,q*) _ _ p* - (I rl/Ar (31) 
y* = [L - ;&)]/A: 

where cc,,(~) indicates the function defining the 
characteristic projection at the plane (c, r). 

3.2.2. The solution of the characteristic equations. As 
an approximate solution of the characteristic equation 

; rectangleisas~~~M7)~~Ll~ (32) 

the straight line equation in the computational 

cl 

FIG. 3. The calculation rectangle for w z Az/At. qL(P*) = ;p*. (33) 
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The solution of the second characteristic equation, 

(34) 

can be written as [2] 

= T$ (q,p) . ev [QP - P*)I 

T&(i.P.P).exp(k.p)dg 

(35) 

where 

k = -/I.At. (36) 

The numerical values of the functions T$* and T,*** 

may be calculated using the linear interpolation. For 
just that reason we assume, that T$* can be expressed 
as 

T#* &*,P*) = q* .P* . T,,, + q* (1 - P*) . T+ 

+ (1 - q*) .P* TclJ + (1 - q*) ‘(1 - P*) . Tcu 

Furthermore, upon noting that 

I 
a = Vc,, - Tc,, - T,,, + Tc,q) .; 

b = ; .U-c12 - Tc,J + Tc,, - Tc,d 

&e2.f 
k 

d = TClg - ; 

(37) 

(38) 

we find the solution in the following form 

Ty** (0,O) = Ty** (q, p) 

-[(a.p+c).p+d)].exp(p.k)+d (39) 

or 

T,(z, t) = TE(z,,, to) 

-[(a.p+c).p+d)].exp(-p.fi.At)+d. (40) 

This way the temperature of the cooling fluid at the 
point (z, t) is calculated. This point is denoted as the 
number 4 (Figs. 2 and 4). It must be emphasized that 
the temperature Ty** (q,p) = T, (z,, to) has been 
calculated as a result of the linear interpolation of the 
known values of T,,, T,, and T,, The value of the 
coefficient Bin the little rectangle l-2-3-4 is constant, 
but only in the first approximation. In the first step of 
the iteration we assume that 

T,, (z, r4, t) = T,, (z, r4, t - At). (41) 

After the computation of the temperature T, (z, t) the 

Pkt-At) 

j 2 

N” 1 P(Z-AZ,t -At) 

2 
r; 

P(q) 

Pkqt 1 

t 

-I 

FIG. 4. The calculation rectangle for w < AZ/~. 

fluid velocity at the point (z, t) can be obtained based 
on the continuity equation 

p, [T, (0, t)] . ~(0, t) - 
= 8Pc 

w(z, t) = s / - t =I . d[ 
0 dt r=; 

P, [T, (z. 4 
(42) 

The integral in (42) can be evaluated approximately 
becausep,(z,t)forO<r<t,O<<<zcanbe 
assumed known. In addition, ~(0, t) is the inlet velocity 
assumed to be a given function of time and represented 
as 

where 

w(0, t) = wo . w,(t) (43) 

w0 = ~(0, 0) is the inlet fluid velocity for t = 0, and 

w,(t) is the non-dimensional rate of the fluid 
velocity as a function of the time. 

Therefore w(z, 0) for z > 0 and ~(0, t) for t > 0 can be 
assumed known. 

Returning to the scheme ofdifferences, one obtains a 
quasi-linear formula for the temperature of the wall: 

T,,k r4r 0 = 
Cl + c2 

1 + Y3 ‘C, 

. T,,(z, r4 - Ar, t) 

+ 
Y3 ‘C, 

1 +y3.c2 

. T&, t) 

+ 
c3 

1 + Y3 c, 

. T&,r4, t - At) (44) 
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where 

2c([T,(z,t)] .Ar 

y3 = &,[T&, r4, t)] 
(45) 

The system of difference equations for fuel, gas gap, 
cladding and coolant is solved by iterations. The right 
hand sides contain the unknowns in the form of weakly 
changing coefficients or in the non-linear form as for 
the coolant temperature. Iterations are terminated 
when the unknowns change little. The computation 
has shown the convergence of those iterations. Later 
we found that the elimination of the coolant 
temperature T,(z, t) from formula (44), with the help of 
(40), leads to quasi-linear equations which fulfil 
sufficient conditions for the convergence of the 
iterations. To do this substitution we write (40) as 

T,(z, t) = 6, T,,(z - AZ, r4, t - At) 

+ 6, T,,(z - AZ, r4, t) 

+ 6, . T,,(z, r4, t - At) 

+ 6, T,,(z, r& t) + 6, (46) 

where the formulas for coefficients ai are given in the 
Appendix. Next, the relation (46) is substituted into 
formula (44). The new equation obtained in this way is 
solved for the temperature T,,(z, r4, t) and one obtains 

Cl 
T,,(z, r4, t) = ___ 

+ c2 
1 + j’3 .C,(l - 64) 

x T,,k r4 - Ar, t) 

+Q. 1 + Y3 . c2 
1 + “93 c, . (1 - 64) 

(47) 

where 

Q = 1 :j ‘> [IS, T,,(z - Az,r,, t - At) 
3’ 2 

+ 6, T,,(z - AZ, r4, t) 

+ 63 T,,(z, r4, t - At) + S,] 

+ 
c3 

1 +y3.c2 

T,,(z, r4, t - At). (48) 

The convergence of the iteration process requires that 
the condition 

c, + c, <I 
1 + “r’2 c, (1 - 6,) 

(49) 

be assured. This is the consequence of the convergence 
criterion [3]. Condition (49) is accomplished for At > 
0. Also the finite-difference equations system (1 l), (12), 
(13) (14) and (17) provides the convergency criterion 

c31: 

pII+ I‘421 < 1 

IA:1 < 1 

Condition (50) is satisfied for At > 0. 

<l 

< 1. (50) 

as well. The 
singularity and quasi-singularity of the equations 
system(ll),(12),(13),(14),(17)and(47)areeliminated 
in this way. Accidental errors are avoided too. The 
feature of the algorithm, presented above, is that it is 
absolutely stable. 

4. NUMERICAL EXAMPLE 

The above-described method is used to estimate the 
failure consequences in the PW-1 pressurized water 
loop. This loop simulates a sub-assembly of the 
WWER-1000 power reactor. As the above-mentioned 
failure we consider the shut-down of the principal 
circuit pump. In order to simplify the task the analysis 
is performed for only one cell. We would like to note 
that in this case the equivalent annulus model is 
acceptable. The calculations are performed under the 
following assumptions : 

(1) The thermal critical flux is calculated using the 
Smolin-Poliakov’s correlation [4]. 

(2) The safety rods drop-down according to the 
characteristic presented in [5]. 

(3) The inlet velocity distribution is determined by 
the formula 

w(z = 0, t) = w 0 

1 + 2.2 . t 
(51) 

(4) The fuel-gas gappcladding element data are the 
same in the preliminary project. 

The results of these calculations allow us to answer 
the principal question: How long can the period of 
time between the beginning of the pump failure and the 
safety rods drop realization moment be in order to 
avoid the appearance of the boiling crisis? The answer, 
about 4 seconds, is given in the Figs. 5 and 6. The above 
result must be considered only as a preliminary one. 
Numerical calculations should be performed again 
when the new data concerning the whole loop circuit 
construction and the operation conditions are given. 

5. REMARKS 

The algorithm of the calculations, presented in this 
paper, makes it possible to solve the unsteady heat 
transfer problems for the nuclear reactor. The 
transient perturbations such as the coast-down of the 
flow of the cooling fluid or the change of the fuel heat 
generation are postulated. The physical properties of 
the reactor components are the functions of the 
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2 (cm) 

t 

I 
0 t(s) 

I 2 3 4 5 6 

FIG. 5. The ratio of the heat flux on the cladding surface to the FIG. 6. The coolant temperature and the steam quality on the 
critical heat flux on the (z, t) plane. (2, f) plane. 

temperature. These properties are tabulated. The 
functions are approximated by the Hermite 
interpolation polynomial. 

The algorithm presented in this paper is designed for 
the unsteady thermohydrodynamic processes 

calculations and-with some modifications-was 
applied in the fast reactor dynamics analysis for the 
dissociating gas N,O, cooled reactor. 
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APPENDIX 

The coefficients Ai are defined as follows: 

A, = 

&[T,(z,r + Ar, t)] - i,[T,(z, r - Ar, t)] hi 
4 

2 i.,[T,(z, r, r)] At + p,[T,(z, r, I)] c,[T,(z, r, r)] (Ar)Z 

A, = 

4CT(z,r + Ar,t)] - &[T,(z,r - Ar,t)] 
4 

2 WAz, r. r)] t + pr[T-,(z,r, t)] c,[T,(z, r, r)] (Ar)’ 
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A, = 
P,[T,(z, r, 111 c,CT,(z, r, 01 . (Ar)’ 

2 &[T,(z,r,t)] ‘At + p,[T,(z,r,t)] . c,[T’(z,r, t)] . (Ar)’ ’ 

A, = 
Ar . (A# q,(z, r) 

2 j.dT,k r, r )I At + pr[ Tdz, r, r )] c([ Tr(z, r, r )] . (Ar)’ 

The coefficients A! are determined by the following expressions: 

A; = 
4 i.,[T,(z, 0, r )] . Ar 

4~i.,[T(z,O,r)] ‘At +p,[TAz,O,r)] .c,[T,(z,O,r)] .(A# ’ 

A; = 
p,CT,(z, 0, r)l c,[T(z,O, 01 . (Ad* 

4 ‘&fCT,(z,O,t)l ‘At + p,[&(z,O,r)] .cFITf(z.O.r)] .(ArS ’ 

A; = 
Ar (A# q,(z, r) 

4 h[T,(z,O;r)] ‘At + pf[Tf(z,O,rJI c,[T,(z,O,r)] (A# ’ 

Next, we assume that 

i,[T,(z, r + Ar, 0)] - i.f[ T,(z, r - Ar, 0)] 

4 

2 j.,[q(z, r, 0)] 

B, = 

j.f[ T,(z, r + Ar, 0)] - &[ T,(z, r - Ar, 0)] 

4 
-_; 

2 &[T(z, r, 011 

B 

3 

= (W2 .q,(z, 0) 

2 J.JT,(z. r, O)] 

and 

At + t {&[T,,(z,r + Ar,r)] - i.,,[T,,(z,r - Ar,r)]) 

c, = 

2 &,l?“,,(z,r~ r)] ‘At + p,,[T,,(z,r, r)] c,,[T,,(z,r, r)] .(ArS 

At - a {&,[T,,(z,r + Ar, t)] - I,,[T,,(z,r - Ar, 07)) 

c, = 
2 ~i.,,[T,,(z.r,t)] ‘At + p,,[T,,(z,r,r)] ‘c,,[T,,(z,r,t)] .(Ar)z 

c, = P~~CTJZ, r, 01 . c,,[T&r, r) (A# 

2 . L[T,,(z, r, 01 At + &,[T,,(z, r, t)] . cJ.TJz,r. t)] (Ar)” ’ 

2 . MT&, r,O)l 

j.,,[T,,(z.r,O)] + a{&,[T,,(z,r + Ar,O)] - I,,[T,,(z,r - Ar,O)]} 

D, = 
2 . U~,,(z,r,OJl 

The coefficients yi are defined as follows : 

YI = 
Ar.1, 

rz In 5 
0 

U?Az, rt. 01 
r2 

Z.Ar.& 

. L[~,,k r,,O)l 

The coefficients di are defined as follows: 

6, = p,~~:%r)z[l-exp(-pB.Ar)]-q(2+pq~~’Ar).exp(-p.~.Ar): 
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6 
.Ar - 2) 

2 = 48 pp~,(Ar)~[~-exp(-~-~~Ar)]-qIB’A~,~rp)-21~exp(-p~~~Ac); 

5 3 /P.Ar-2.q [l -exp(-p.fi.Ar)] -P’B’At(1-q)-2q .exp(_p.p.Ar); 
p . p2 . (A# B.Ar 

6, = p B A@ t At - 1) - q(/l. Ar - 2) 

p b2 (Ar)2 
[i -exp(-p./I,At)] - 

~~AWp-q-_p)+2q~exp(_p,B,Ar), 

B.Ar 

6, = T,(z,,r,).exp(-p./I.Ar). 

L’ECHANGE DE LA CHALEUR ENTRE LA GAINE ET LE FLUID REFRIGERANT 

Resume-On a examine I’exemple d’utilisation de la methode aux differences finies aux calculs d’echange de 
la chaleur dans un canal d’une pile nucleaire. On a montre un mode de solution du systeme d’equations 
dilferentielles, tres commode pour le cas consider& Les equations sont couplQs les unes aux autres par les 
conditions aux limites entre les zones distincts du systeme consider& On a gagne une simplification 
considtrable-conduisante a l’economie du temps de calculs-par l’elimination, dans le scheme aux 
diff&.nces, de la temperature du fluide refrigerant, couplQ avec la temperature du combustible et de la gaine 
par intermediaire de l’equation unidimensionelle de I’energie. C’est une equation quasilineaire valable dans la 
zone du canal avec le fluide refrigerant. La methode peut-&re gentralisb aux systemes, plus complexes y 
compris I’echange de la chaleur par la conduction et la convection. Elle garantie aussi la stabiliti du systeme 

d’equations aux differences, qui rapprochent l’ecoulement du processus donne. 

NUMERISCHE BERECHNUNG DER WARMEUBERTRAGUNG IN DEN 
BRENNELEMENTEN EINES KERNREAKTORS 

ZILsammenfassung-In der vorliegenden Arbeit ist ein Digerenzverfahren angegeben, welches die Bestim- 
mung des Warmetransport in den Kemreaktorskanalen gestattet. Das Verfahren ist besonders zur Losung 
der Systeme von Differentialgleichungen gee&net. An RBhdem des Integrationsintervalls entsprechender 
Dilferentialgleichungen sind die zugeschriebenen Randwerte beriicksichtigt worden. 

Es I&St sich die Berechnung beschleunigen, indem man die Temperatur des Kiihlmittels, die mit der 
Temperatur des Brennelementes und dessen Ummantelung verbunden ist, eliminiert. 

Das Berechnungsverfahren kann such auf komplizierte Falle ilbertragen werden. Es ist such anwendbar, 
wenn die Wtirmeiibertragung aus der Wiirmeleitung und der Konvektion zusammengesetzt ist. Unabhangig 

davon versichert das angegebene Verfahren, dass das Berechnungschema stabil wird. 

TEHJIOIIEPEHOC HA FPAHMHE PA3AEJIA OBOJIOYKA-OXJIA~JIAIGIII48 
X@IjJKOCTb 

AHHOTauIIfi - PaccMorpeH npmep ricnonb30Bakim KoHemo-pa3Hocmoro hferona ~nr pacrera nepe- 
HOCa TWIJIa B KaHaJIe KnepHOrO FaKTOpa. PeUIeHHe CUCTeMbl JVi~~e~H~HaJlbHbIX YpaBHeHRii IIpn- 

CTaBJIeHO B yno6aoii @OpMe. YpaBHeHHK ,Je”IafOTCK COBMeCTHO C rPaHHYHbLMH YCJIOBHIMH Ha 

IIOBepXHOCTKX MeXGly OTlleJlbHbIMW 06JlaCTKMH paCCMaTpHFSaeM0~ CHCTeMbI. C)‘UJeCTBeHHOe YIlpOWe- 

me nonygeuo 3a cqeT mmo~em~ B xonequo-pa3nocruoii cxebre rehmeparypbi TennoHocmenn, 
CBK3aHHOii C TeMIIePaTypOii TOIUWBHOrO 3neMeHTa B o6onowmi OnHOMe,,Hb,M ,‘paBHeHHeM 3HeprHES. 

TeM CaMbIM IlOJIy’ieHa 3KOHOMHK BFMCHB CWTa. MeTOn 06eCtIeWiBaeT yCTOk+iHBOCTb KOHe’iHO- 

Pa3HOCTHOfi CXeMbI. &WCTaBJIeHHbIii MeTOn MO)KHO 06o6mnrb Ha 6onee CJIOxHble CWCTCMbI. 


